## Spatial Database Management GEP 664 / GEP 380 Class #1: Introduction

Frank Donnelly

Dept of EEGS, Lehman College CUNY

Spring 2019

# Today's Topics

# Course Overview

The Syllabus

**Technical Details** 

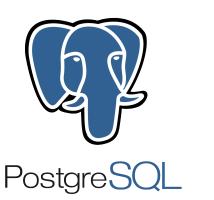
Next Class

# Spatial Databases

## PostgreSQL & PostGIS

Database that has been optimized to store spatial data and perform geographic functions.

Organization and storage: keep related geographic features and data tables together


Relational database: utilizes all the benefits of this structure

Multi-user: many people can read and write simultaneously

Automation and validation of tasks: connect to data with many tools, control over data quality

Work with big datasets: when desktop software and online tools fall flat

▲□▶▲圖▶▲臣▶▲臣▶ 臣 の�?





▲□▶▲□▶▲≡▶▲≡▶ Ξ のQで

# Data Structure

An organized collection of data designed for efficiently answering questions and storing information.

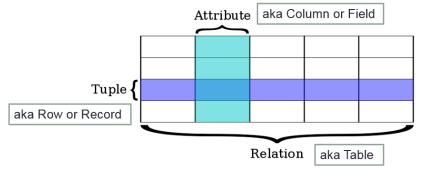



Image source: https://en.wikipedia.org/wiki/Relational\_database

Values for specific attributes are drawn from an allowable set called a domain. Attributes are assigned data types, which limits the allowable values and operations that can be performed.

- Variable characters / Text (string)
- Integers (whole numbers)
- Reals / Floats (decimal numbers)
- ► Time and Date

・ロト・日本・モー・ 日 うらの

## Keys and Joins

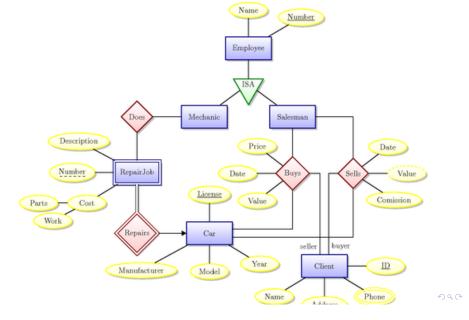
## SQL Data Manipulation

This structure helps to insure the integrity of the data and makes it possible to relate values in one table to values in another using an attribute they hold in common: a unique ID code called a primary key.

|   | FID | Shape * | STATE | COUNTY | NAME        | LSAD | ^ | FIPS | County      | TotalDeathRate | Heart | Neoplasms | Ī |
|---|-----|---------|-------|--------|-------------|------|---|------|-------------|----------------|-------|-----------|---|
|   | 32  | Polygon | 36    | 001    | Albany      | 06   |   | 001  | Albany      | 938.2          | 315   | 211.8     | 1 |
|   | 41  | Polygon | 36    | 003    | Allegany    | 06   |   | 003  | Allegany    | 897.7          | 263   | 203.7     | 1 |
|   | 58  | Polygon | 36    | 059    | Nassau      | 06   |   | 005  | Bronx       | 702.9          | 251   | 148.1     | 1 |
|   | 45  | Polygon | 36    | 007    | Broome      | 06   |   | 007  | Broome      | 1048.1         | 303   | 231.2     |   |
| Γ | 40  | Polygon | 36    | 009    | Cattaraugus | 06   |   | 009  | Cattaraugus | 1089.2         | 413.6 | 217.6     | 1 |
|   | 12  | Polygon | 36    | 011    | Cayuga      | 06   |   | 011  | Cayuga      | 854.5          | 278.3 | 189.2     |   |
|   | 38  | Polygon | 36    | 013    | Chautauqua  | 06   |   | 013  | Chautauqua  | 1038.9         | 328.6 | 229.5     | 1 |
|   | 47  | Polygon | 36    | 015    | Chemung     | 06   |   | 015  | Chemung     | 1001.3         | 295.6 | 238.9     | 1 |
| Γ | 35  | Polygon | 36    | 017    | Chenango    | 06   |   | 017  | Chenango    | 1060.5         | 441.6 | 223.7     | 1 |
|   | 1   | Polygon | 36    | 019    | Clinton     | 06   | ~ | 019  | Clinton     | 763.4          | 204   | 178.3     |   |
|   |     |         |       |        |             | >    |   | <    |             |                |       | >         |   |

SQL is the language for creating and manipulating relational databases; originally based on relational algebra, it uses declarative commands in English.

SELECT county\_name, pop AS population FROM countypop WHERE state='NY' AND pop > 50000 ORDER BY pop;


▲□▶▲圖▶▲臣▶▲臣▶ 臣 の�?

# SQL Data Design

### Database Design

The structure of the relational database and the SQL language were designed to be independent of any specific hardware or software.

#### CREATE TABLE countypop ( geoid varchar(5) CHECK (char\_length(geoid) = 5), state varchar(2), county\_name text, pop integer, CONSTRAINT gidkey PRIMARY KEY (geoid) );



#### Data Processing i.e. Extract, Transform, Load

| BP_2014_00CZ1_with_ann - Notepad                                                                                  |      | idit Data - Po     | ostgreSQL 9.3 (localhost:5432) - gep664 - i | yszbp2014 |                      |                        |            | - C - X                |
|-------------------------------------------------------------------------------------------------------------------|------|--------------------|---------------------------------------------|-----------|----------------------|------------------------|------------|------------------------|
| File Edit Format View Help                                                                                        | FILE | Edit Viev          | w Iools Help                                |           |                      |                        |            |                        |
| GEO. id, GEO. id2, GEO. display-label, NAICS. id, NAICS. display-<br>label, YEAR, id, ESTAB, EMP, PAYOTRI, PAYANN |      | 1 🤊 🔿 🛯 🖻          | 🛯 🚳 🐨 🍞 👔 100 rows 👻                        |           |                      |                        |            |                        |
| Geographic identifier code.Id2.Geographic area name.2012 NAICS code.Meaning of 2012                               |      | zipcode            | zipname                                     |           | employees<br>integer | empflag<br>character v | payrol_tho | payflag<br>character v |
| NAICS code, Year, Number of establishments, Paid employees for pay period including                               |      | [PK] chai<br>00501 | ZIP 00501 (Moltaville, NY)                  | integer   | integer              | character v            | nteger     | character v            |
| March 12 (number), "First-quarter payrol] (\$1,000)", "Annual payrol] (\$1,000)"                                  |      |                    |                                             |           | 197                  | D                      | 13178      | 5                      |
| 86100000500501,00501,"ZIP 00501 (Holtsville, NY)",00,Total for all                                                |      | 06390              | SIP 06390 (Fishers Island, N                |           |                      |                        |            |                        |
| sectors,2014,4,b,D,D<br>8610000US06390,06390,"ZIP 06390 (Fishers Island, NY)".00.Total for all                    |      | 10001              | SIP 10001 (New York, NY)                    | 7369      | 150381               |                        | 8907912    |                        |
| sectors, 2014, 40, 197, 246, 13178                                                                                |      |                    | SIP 10002 (New York, NY)                    | 2972      | 21459                |                        | 671500     |                        |
| 8610000US10001,10001,"ZIP 10001 (New York, NY)",00,Total for all                                                  | 5    | 10003              | SIP 10003 (New York, NY)                    | 4333      | 109860               |                        | 6887483    |                        |
| sectors, 2014, 7369, 150381, 2207824, 8907912                                                                     |      | 10004              | SIP 10004 (New York, NY)                    | 1554      | 62016                |                        | 11733524   |                        |
| 86100000\$10002,10002,"ZIP 10002 (New York, NY)".00.Total for all                                                 |      | 10005              | SIP 10005 (New York, NY)                    | 1321      | 42344                |                        | 6761564    |                        |
| sectors, 2014, 2972, 21459, 155145, 671500                                                                        |      | 10006              | SIP 10006 (New York, NY)                    | 855       | 19726                |                        | 2300230    |                        |
| 8610000ÚS100Ó3,10Ó03,"ZÍP 10003 (New York, NY)",00,Total for all                                                  | 5    | 10007              | SIP 10007 (New York, NY)                    | 1451      | 28772                |                        | 2798122    |                        |
| sectors, 2014, 4333, 109860, 1754943, 6887483                                                                     |      | 10008              | SIP 1000B (New York, NY)                    | 15        |                      |                        | 17464      |                        |
| 86100000\$10004,10004,"ZIP 10004 (New York, NY)",00,Total for all                                                 |      | 10009              | SIP 10009 (New York, NY)                    | 1248      | 9600                 |                        | 411148     |                        |
| sectors, 2014, 1554, 62016, 5584559, 11733524                                                                     |      | 2 10010            | SIP 10010 (New York, NY)                    | 3137      | 74039                |                        | 7860140    |                        |
| 86100000510005,10005,"ZIP 10005 (New York, NY)",00,Total for all                                                  |      | 3 10011            | SIP 10011 (New York, NY)                    | 3958      | 63474                |                        | 4164642    |                        |
| sectors,2014,1321,42344,2708958,6761564<br>8610000US10006,10006,"ZIP 10006 (New York, NY)",00,Total for all       |      |                    |                                             | 2983      |                      |                        |            |                        |
| sectors 2014,855,19726,645737,2300230                                                                             |      | 10012              | ZIP 10012 (New York, NY)                    |           | 41920                |                        | 2444313    |                        |
| 8610000US10007,10007,"ZIP 10007 (New York, NY)".00.Total for all                                                  |      | 5 10013            | SIP 10013 (New York, NY)                    | 5417      | 76461                |                        | 7492878    |                        |
| sectors.2014.1451.2872.894601.2798122                                                                             |      | 5 10014            | SIP 10014 (New York, NY)                    | 2448      | 43683                |                        | 2774296    |                        |
| 8610000US10008,10008,"ZIP 10008 (New York, NY)".00.Total for all                                                  | 1    | 10016              | SIP 10016 (New York, NY)                    | 5968      | 113168               |                        | 9202349    |                        |
| sectors .2014.15.f.4212.17464                                                                                     | 1    | 3 10017            | SIP 10017 (New York, NY)                    | 4963      | 151614               |                        | 19910777   |                        |
| 86100000\$10009,10009,"ZIP 10009 (New York, NY)".00.Total for all                                                 | 1    | 10018              | SIP 10018 (New York, NY)                    | 6808      | 136779               |                        | 10547799   |                        |
| sectors 2014 1248 9600 93619 411148                                                                               |      |                    | man 40040 (m m ) mm)                        | 4000      | 4 4 4 4 0 7          |                        | 00000404   |                        |

### Spatial Databases

Geographic vector features stored as series of coordinates in a geometry data type. Geometry sub-types:

- ▶ POINT(0 0)
- LINESTRING(0 0,1 1,1 2)
- POLYGON((0 0,4 0,4 4,0 4,0 0),(1 1, 2 1, 2 2, 1 2,1 1))
- MULTIPOINT((0 0),(1 2))
- MULTILINESTRING((0 0,1 1,1 2),(2 3,3 2,5 4))
- MULTIPOLYGON(((0 0,4 0,4 4,0 4,0 0),(1 1,2 1,2 2,1 2,1 1)), ((-1 -1,-1 -2,-2 -2,-2 -1,-1 -1)))
- GEOMETRYCOLLECTION(POINT(2 3),LINESTRING(2 3,3 4))

#### Image source: http://www.texample.net/tikz/examples/entity-relationship-diagram/

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

# Spatial Relationships & Analysis

**FROM** boroughs, stations

WHERE bname='Bronx' AND

SELECT bname, stop\_name, trains

ST\_Within (stations.geom, boroughs.geom);

When features have geometry they can be compared spatialy.

Geometry columns are referenced with internal metadata tables that store coordinate systems.

**Table Relationships** 

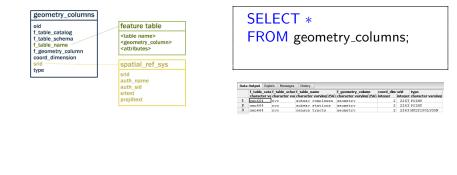
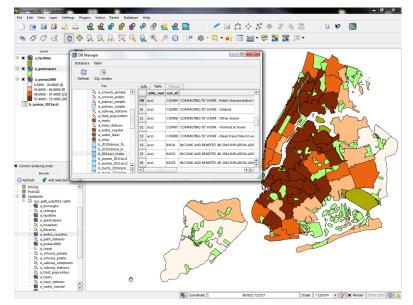



 Image: Contains
 Image: Contains


Image source: https://www.gaia-gis.it/spatialite-2.1/SpatiaLite-manual\_html 🛓 🐌 👔 🔊 Q (>

# **Proximity Analysis**

Adjacency, Buffers, Distance, Distance Within, Nearest Neighbor. Spatial relationships can be evaluated quickly using spatial indexes.



Spatial Data Organization & Desktop GIS



▲□▶▲□▶▲臣▶▲臣▶ ■ のへの

▲□▶▲圖▶▲臣▶▲臣▶ 臣 の�?

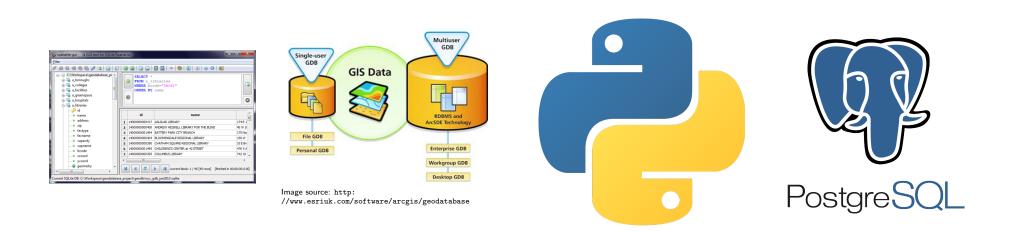
- Roles and permissions for users
- Triggers and transactions for processes
- ► Fine tuning and performance
- Backup and restoration



Vector image

Raster image

| ector     |             |           | Raster     |        |
|-----------|-------------|-----------|------------|--------|
| olygon ID | Coordinates | Soil Type | Grid Ref.  | ltem   |
|           | A,B,C,D,E   | Chalk     | x=1, y=1   | Chalk  |
|           | B,C,F,G     | Clay      | X=2, y=1   | Chalk  |
|           | C,F,H,D     | Gravel    | X=3, y= 1  | Chalk  |
|           |             |           | X=4 etc.   |        |
|           |             |           | X=20, y=20 | Gravel |
|           |             |           |            |        |


Image from http://www.arts-humanities.net/wiki/gis\_geographic\_information\_system\_archaeology

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

・ロト・日本・日本・日本・日本・日本

Other Database Formats Spatialite for desktop, ArcGIS formats

### Programming / Scripting Languages Python and PostgreSQL



Classes 1 through 5 Essentials of Relational Databases (Jan - Feb)

Classes 6 through 10 Essentials of Spatial Databases (Mar - Apr)

Spring Break Apr 23

Classes 11 through 13 Special Topics (Apr - May)

Class 14 and Final Final Projects (May)

#### For each class:

- 1. Hand in assignments
- 2. Lecture and discussion
- 3. Exercises
- 4. Break

Today's Topics

- 5. Lecture and discussion
- 6. Exercises
- 7. Return previous assignments and discuss
- 8. Lab time to begin next assignments

#### 

#### 

My Background Geography & Library & Information Science

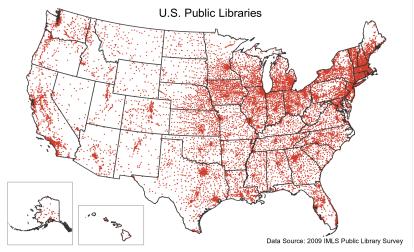



Image source: https://atcoordinates.info/tag/public-libraries/

Course Overview

The Syllabus

# **Technical Details**

# Next Class

| The Syllabus                                        | Today's Topics    |                                       |
|-----------------------------------------------------|-------------------|---------------------------------------|
|                                                     |                   |                                       |
|                                                     | Course Overview   |                                       |
| Course website: https://spatdb.commons.gc.cuny.edu/ | The Syllabus      |                                       |
|                                                     | Technical Details |                                       |
|                                                     | Next Class        |                                       |
|                                                     | ۹. (۲.            | < □ > < □ > < 芝 > < 芝 > < 芝 > < ジ < ぐ |
|                                                     | Auchitestum       |                                       |

Interfaces

## Architecture

Databases exist as discrete objects outside of a specific interface. You can interact with a CLI or GUI.



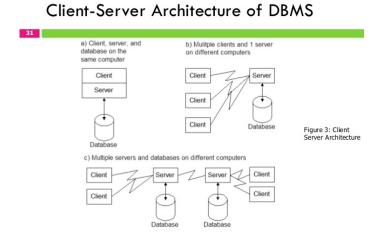



Image source: http://www.slideshare.net/b15ku7/chapter-1-fundamentals-of-database-management-system

| Today's Topics    | Due Next Class                                                                    |
|-------------------|-----------------------------------------------------------------------------------|
|                   |                                                                                   |
| Course Overview   | The following are due at the beginning of our next class:                         |
| The Syllabus      | Assignment #1<br>Posted on the course website (under Assignments)                 |
|                   | Readings for Class #2<br>Listed in the syllabus, in the <i>Practical SQL</i> book |
| Technical Details | Note: There is overlap in course content and readings for                         |
| Next Class        | classes 2 & 3                                                                     |

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

・ロ・・母・・ヨ・・ヨー ひゃぐ