
Spatial Database Management
GEP 664 / GEP 380

Class #3: Database Fundamentals and SQL DDL

Frank Donnelly

Dept of EEGS, Lehman College CUNY

Spring 2019

Today’s Topics

Updating Database Records

Database Structure, Tables and Constraints

Views, Importing Data

Next Class

Subsets of the SQL Language

� Data Manipulation Language
� SELECT... FROM... WHERE
� INSERT... INTO... VALUES
� DELETE FROM... WHERE
� UPDATE... SET... WHERE

� Data Definition Language
� CREATE...
� DROP...
� ALTER...
� RENAME...

� Data Control Language
� GRANT...
� REVOKE...

Updating Database Records

Add new rows

INSERT INTO nyc.weather stations
VALUES (’WBAN:04781’, ’ISLIP AIRPORT NY US’, 25.6,

40.7939, −73.1017);

Update existing rows

UPDATE nyc.weather stations
SET station name=’ISLIP LI MACARTHUR AIRPORT NY US’
WHERE station id = ’WBAN:04781’;

Delete rows

DELETE FROM nyc.weather stations
WHERE station id= ’WBAN:04781’;

Today’s Topics

Updating Database Records

Database Structure, Tables and Constraints

Views, Importing Data

Next Class

Database Objects

Database
� Schema

� Table (or object)
� Attribute / Column

Schemas

The level between a database and individual objects, a schema
is a grouping of closely related objects.

� Helpful for managing user access

� Group tables thematically or by project

� Default schema is called ’public’,

� PostgreSQL assumes you’re using public unless you say
otherwise

� By default all users have access to read and write to public

CREATE SCHEMA schema name
AUTHORIZATION postgres;

Creating Tables

CREATE TABLE nyc.weather station (
station id varchar(20) PRIMARY KEY,
station name text NOT NULL,
elevation numeric(6,1),
lat numeric(9,6),
lon numeric(9,6)

);

Identifiers - Naming Things

For naming all objects, you can use:

� upper-case letters A to Z

� lower-case letters a to z

� digits 0 to 9

� underscore character

Restrictions:

� no longer than 128 characters (shorter is better)

� must start with a letter (not numbers)

� must not contain spaces (use underscore)

� must not use reserved keywords

Consider specificity vs. length, singular vs. plural, mixing
cases, and context. Stay consistent.

Data Types

Most basic restriction assigned to columns to insure data
integrity and to define permissible functions.

� numbers

� text

� dates

� others

Numeric Types

Whole numbers

integer most common, range -2147483648 to
+2147483647

smallint for limited cases, range -32768 to +32767

bigint for limited cases, insanely large

serial same as integer, automatically generated

Decimals

numeric (p,s) specify precision (number of digits) and scale
(number of decimal places)

real use for big numbers (6 decimal places)

double for limited cases, insanely large

Numeric Types

For decimals it’s usually best to use numeric and provide
specs, or use real if 6 decimals is enough. For whole numbers
it’s best to use integer

Scale and precision examples:

Numeric(5,0) stores number up to 99999

Numeric(5,1) stores number up to 9999.9

Numeric(5,2) stores number up to 999.99

Character Types

For storing text, aka strings

char store a single character

char(n) avoid - stores characters of n length padded with
spaces

varchar(n) stores variable number of characters up to n
length

text store unlimited characters, good when length is
large or unknown

Numbers can be stored as text, common for ID numbers that
don’t represent quantities. Text cannot be stored as numbers.

Date Types

Can hold dates and times in many formats

date just the date

time just the time

timestamp full date and time

timestampz full date and time with timezone

Suggested format is ISO 8601 standard, Y-M-D-H-M-S:
TIMESTAMP ’2016-09-08 10:30:00’

Other Types

boolean true/false, yes/no, on/off, 1/0

bitea for storing binary strings, sequences of octets or
bytes

xml and json particular to these data formats

enum enumerated - make up your own types

money avoid - use numeric instead

geometric avoid - use PostGIS instead

Functions

Are particular to specific types of data

� Numbers: mathematical functions, arithmetic, algebraic,
trigonometric, rounding

� Text: searching and pattern matching, string modification
and substitution

� Comparison operations can be performed on all types

� Formatting functions can temporarily cast from one type
to another

CAST

Use for converting data types on the fly to achieve a desired
result, such as a decimal after dividing two integers (below)

SELECT weather id, station id,
CAST(windspeed mph AS numeric) / CAST(windgust mph AS

numeric) ∗ 100 AS pct gust
FROM nyc.weather daily
WHERE year = 2017 AND windgust mph IS NOT NULL;

In PostgreSQL :: is a shortcut for CAST:

(windspeed mph::numeric / windgust mph::numeric) ∗ 100 AS
pct gust

Basic Constraints

In the CREATE statement, add constraints to specific columns

� NOT NULL

� UNIQUE

� PRIMARY KEY

� DEFAULT (default value)

� CHECK (condition)

� REFERENCES

Column and Table Constraints

CREATE TABLE nyc.weather stations (
station id varchar(20) PRIMARY KEY,
station name text NOT NULL,
elevation numeric(6,1),
lat numeric(9,6) CHECK(lat>0),
lon numeric(9,6) CHECK(lon<0));

CREATE TABLE nyc.weather stations (
station id varchar(20),
station name text NOT NULL,
elevation numeric(6,1),
lat numeric(9,6),
lon numeric(9,6),
CONSTRAINT pksid PRIMARY KEY (station id),
CONSTRAINT lat pos CHECK (lat>0),
CONSTRAINT lon neg CHECK (lon<0));

Entity Integrity

Insured with Primary Keys

� Unique, not null id column for each row

� Can also be a composite key (combo of several columns)

� Insures no duplication of records

� Automatically indexed

� Natural key is derived outside the database, has meaning

� Surrogate key is artificial, made in the database

� Use SERIAL type to create auto-sequential integer key

Referential Integrity

Insured with Foreign Keys

� Links row in child table to a parent table

� If foreign key contains a value, it must refer to existing
value in the parent table

� Insures there are no mismatches between tables

� As column constraint: use REFERENCES followed by
foreign table and column names

� As table constraint: name the constraint and explicitly
state FOREIGN KEY followed by REFERENCES clause

Keys as Column or Table Constraints

CREATE TABLE nyc.weather daily (
weather id integer PRIMARY KEY,
station id varchar(20) REFERENCES nyc.weather stations (
station id),
...);

CREATE TABLE nyc.weather daily (
weather id integer,
station id varchar(20), ...

CONSTRAINT pkwid PRIMARY KEY (weather id),
CONSTRAINT fksid FOREIGN KEY (station id)
REFERENCES nyc.weather stations (station id));

Modifying and Deleting

Add or remove any database objects. For tables:
� ALTER TABLE table name

� ADD COLUMN name datatype...
� RENAME COLUMN name TO newname
� DROP COLUMN name datatype...
� Can do the same with checks and constraints

� DROP TABLE table name

Be careful when dropping!

� RESTRICT stops DROP operations if there are table
dependence issues

� CASCADE proceeds with DROP and deletes all table
dependencies too

ALTER with UPDATE - SET

These commands are often used to create a new column and
populate it with data from another column based on some
condition. Executed in two separate statements:

ALTER TABLE nyc.weather stations
ADD COLUMN airport varchar(3);

UPDATE nyc.weather stations
SET airport=’yes’
WHERE station name LIKE ’%AIRPORT%’;

(Alternatively, for this particular example you could assign the
airport column a boolean type and SET values = True)

Comment

COMMENT is a command unique to PostgreSQL for adding
brief descriptions for objects.

COMMENT ON TABLE nyc.weather station
IS ’Selection of NOAA weather stations in the NYC metro area’;

SELECT description
FROM pg description
WHERE objoid = ’nyc.weather station’::regclass;

Alternative: use pgadmin to view and edit comments (under
Properties tab)

Today’s Topics

Updating Database Records

Database Structure, Tables and Constraints

Views, Importing Data

Next Class

Views

Objects that are virtual tables - good way to save a complex
query. Saves the statement - not the data. Views are tied to
the underlying table(s).

CREATE VIEW nyc.summary2017 AS
SELECT year, month,
COUNT(weather id) AS records,
MIN(drybulb temp f) AS mintemp,
MAX(drybulb temp f) AS maxtemp,
AVG(drybulb temp f) AS avgtemp
FROM nyc.weather daily
WHERE year=2017
GROUP BY year, month
ORDER BY month;

Insert Individual Records
Method 1

1. Prepare target table (create empty table, or use existing
well-structured table)

2. Insert records via the statement

INSERT INTO nyc.weather stations
VALUES (’WBAN:04781’, ’ISLIP LI MACARTHUR AIRPORT

NY US’, 25.6, 40.7939, −73.1017),
(’WBAN:54780’, ’MONTAUK AIRPORT, NY US’, 2.1,

41.07306, −71.92333);

Caveat: values must be listed in order of table columns,
otherwise you must list them before VALUES in ()

Insert Table Records
Method 2

1. Create the empty target table

2. For internal data: import data from existing table

3. For external data: import into a temporary table, then
import to target

Caveat: input and target columns must align

INSERT INTO nyc.weather stations (station id, station name,
elevation, lat, lon)

SELECT sid, sname, elev, latitude, longitude
FROM nyc.temp stations
WHERE state = ’NY’;

Import data with COPY

COPY data into temporary staging table then INSERT to
target, or COPY data directly to well structured target.
Example 1: Windows, comma-delimited with no header row

COPY nyc.weather staging
FROM ’C:\user\weatherdata\newobservs.csv’ WITH

DELIMITER AS ’,’

Example 2: Mac / Linux, tab-delimited with header row

COPY nyc.weather staging
FROM ’user/weatherdata/newobservs.txt’ WITH DELIMITER

AS ’\t’ CSV HEADER

Make sure to move data files to directory BEFORE launching
pgadmin; it won’t detect files moved there after launch.

https://www.postgresql.org/docs/10/sql-copy.html

Import Data with pgAdmin

Create empty table with structure. Right click on table,
choose Import/Export. Must specify: Import, Filename,
Format, Header, Delimiter, Quote.

Create Table As
Method 3

1. Create data from existing table

Caveats: cannot add constraints, cannot assign data types for
new fields

CREATE TABLE nyc.weather stations ny AS
SELECT station id, station name, elevation, lat, lon
FROM nyc.weather stations
WHERE station name LIKE ’%NY%’;

Create View
Method 4

1. Create view from existing table

If it isn’t necessary to save data permanently in a new table:

CREATE VIEW nyc.weather stations ny AS
SELECT station id, station name, elevation, lat, lon
FROM nyc.weather stations
WHERE station name LIKE ’%NY%’;

Today’s Topics

Updating Database Records

Database Structure, Tables and Constraints

Views, Importing Data

Next Class

Due Next Class

The following are due at the beginning of our next class:

Assignment #3

Posted on the course website

Readings for Class #4

Listed in the syllabus, posted on the library’s E-Reserve page

