
Spatial Database Management
GEP 664 / GEP 380

Class #6: Spatial database fundamentals

Frank Donnelly

Dept of EEGS, Lehman College CUNY

Spring 2019

Today’s Topics

Spatial Databases & Geometry

PostGIS & Desktop GIS

Next Class

PostgreSQL & PostGIS Spatial Databases

Geographic vector features stored as series of coordinates in a
dedicated column, with a geometry data type and sub-types:

� POINT(0 0)

� LINESTRING(0 0,1 1,1 2)

� POLYGON((0 0,4 0,4 4,0 4,0 0),(1 1, 2 1, 2 2, 1 2,1 1))

The data types and sub-types allow you to model real-world
features, like the fast food example in PostGIS in Action
Chapter 1.



Spatial Reference Systems

Geometry columns are referenced with internal metadata
tables that store coordinate systems.

SELECT ∗
FROM geometry columns;

Spatial Relationships & Analysis

When features have geometry they can be compared spatially.
Spatial functions begin with the prefix “ST ”

SELECT bname, stop name, trains
FROM boroughs, stations
WHERE bname=’Bronx’ AND
ST Within (stations.geom, boroughs.geom);

Image source: https://www.gaia-gis.it/spatialite-2.1/SpatiaLite-manual.html

Spatial Data Types

PostGIS adds support for four spatial data types:

Geometry: the most common, uses planar Cartesian grid

Geography: uses geodetic system, based on spherical surface

Raster: continuous grid of pixels of equal size

Topology: models the interconnectedness of features, all
boundaries are shared

Geometry Columns

geometry columns is a view stored in the public schema, use it
to see the spatial attributes of features in the database.

SELECT ∗
FROM geometry columns;

There are separate views for geography columns and
raster columns.



Geometry Subtypes

� Geometry subtypes are type modifiers

� i.e. varchar(10), geometry(point)

� Points, Linestrings, and Polygons

� Subtypes come in single and multi options

� There is a geometry collection type for storing mixed
features (it has limited uses)

� Store X,Y coordinates but also Z for elevation / depth, M
for measurements

Singlepart versus Multipart

Multipart subtypes are used to store geometry for features
that have multiple, disparate parts.

This census tract consists of many islands but should be stored
as a single feature in the table, and not as several features.

Point Subtype

Representation:

POINT(0 0)

MULTIPOINT((0 0),(1 2))

Spatial functions:

ST X return the X coordinate: ST X(geom)

ST Y return the Y coordinate: ST Y(geom)

Image source: http://workshops.boundlessgeo.com/postgis-intro/geometries.html

Linestring Subtype

Representation:

LINESTRING(0 0,1 1,1 2)

MULTILINESTRING((0 0,1 1,1 2),(2 3,3 2,5 4))

Spatial functions:

ST Length returns length of the line

ST StartPoint returns first coordinate

ST EndPoint returns last coordinate

ST NPoints returns number of coordinates in the line

Image source: http://workshops.boundlessgeo.com/postgis-intro/geometries.html



Polygon Subtype

Representation:

POLYGON((0 0,4 0,4 4,0 4,0 0),(1 1, 2 1, 2 2, 1 2,1 1))

MULTIPOLYGON(((0 0,4 0,4 4,0 4,0 0),(1 1,2 1,2 2,1 2,1

((-1 -1,-1 -2,-2 -2,-2 -1,-1 -1)))

Spatial functions:
ST Area returns area of the polygon

ST Perimeter returns perimeter of the polygon
ST Centroid calculates and returns center point of polygon
ST NRings returns the number of rings

Image source: http://workshops.boundlessgeo.com/postgis-intro/geometries.html

WKT and WKB

Geometry stored in PostGIS is not readily viewable; it must be
transformed when queried.

The OpenGIS specification defines 2 ways of expressing spatial
objects: the Well-Known Text (WKT) and the Well-Known
Binary (WKB) forms. PostGIS has 2 commands for each: an
OGC compliant form that outputs subtype and coordinates,
and a PostGIS specific form that also outputs the SRID.

� ST AsText (OGC compliant)

� ST AsEWKT (PostGIS specific)

� ST AsBinary (OGC compliant)

� ST AsEWKB (PostGIS specific)

Sample Data - NYC Spatial Features

We’ll begin using some spatial features in the nyc schema of
the gep664 database as examples:

spatial data : census tracts, subway stations, subway
complexes (with ridership)

attribute data : 2010 census data by tract, 2010 census
variable descriptions, neighborhood tabulation
areas, subway closure notes

Source: NYC Geodatabase

Retrieving Geometry

SELECT stop id, stop name, trains, geometry
FROM nyc.subway stations
ORDER BY stop id;

SELECT stop id, stop name, trains, ST AsText(geometry) AS
geom

FROM nyc.subway stations
ORDER BY stop id;



Functions and Retrieving Geometry

SELECT tractid, namelsad,
ST AsText(ST Centroid(geometry)) AS center
FROM nyc.census tracts;

SELECT tractid, namelsad,
ST AsText(ST Envelope(geometry)) AS bbox
FROM nyc.census tracts;

Summary Functions

Coordinates and measurements that are returned are based on
the feature’s underlying spatial reference system.

SELECT tractid, namelsad, ST Area(geometry) as area sqft,
ST Area(geometry)/27878400 AS area sqmi,
ST Perimeter(geometry) AS per ft,
ST Perimeter(geometry)/5280 AS per mi
FROM nyc.census tracts;

Rounding and Casting

Use ROUND by itself to display values as integers. To round
and preserve decimal places, you must CAST the output of the
geometry calculation as numeric and then ROUND.

SELECT tractid, namelsad,
ROUND(ST Area(geometry)) as area sqft,
ROUND(CAST(ST Area(geometry)/27878400 AS numeric),3)

AS area sqmi
FROM nyc.census tracts;

Combining Regular and Spatial Functions

Select the northernmost subway station.

SELECT stop id, stop name, trains
FROM nyc.subway stations
WHERE ST Y(geometry) IN (
SELECT MAX(ST Y(geometry))
FROM nyc.subway stations);



Adding and Inserting Geometry - Manual WKT

Add to a new table with CREATE TABLE or to an existing
table with ALTER TABLE. Specify: type(subtype, srid)

CREATE TABLE nyc.weather station2 (
station id varchar(20) PRIMARY KEY,
station name text,
elevation numeric(6,1),
geom geometry(point, 4269));

Inserting coordinates manually as WKT. You must designate
the SRS for each feature to match the geometry column.

INSERT INTO nyc.weather station
VALUES (’WBAN:04781’, ’ISLIP AIRPORT NY US’, 25.6,
ST GeomFromText(’POINT(40.7939 −73.1017)’,4269)),

(’WBAN:54780’, ’MONTAUK AIRPORT, NY US’, 2.1,
ST GeomFromText(’POINT(41.07306 −71.92333)’,4269));

Adding and Building Geometry From Coordinates

Add to a new table with CREATE TABLE or to an existing
table with ALTER TABLE. Specify: type(subtype, srid)

ALTER TABLE nyc.weather station
ADD COLUMN geom geometry(point, 4269);

If you already have coordinates stored in columns you can
build geometry. Wrap SRS function around Point function.
Arguments to ST Point are columns containing X coordinate
and Y coordinate.

UPDATE nyc.weather station
SET geom = ST SetSRID(ST Point(lon,lat),4269)

ST Point works for 2D; use ST MakePoint for 3D.

Building Geometry After Insert With Coordinates

Create table with geometry column, insert all data except
geometry, build geometry from coordinates at the end.

CREATE TABLE public.cities (
city id integer PRIMARY KEY,
city name text,
longitude real,
latitude real,
geom geometry(point, 4269));

INSERT INTO public.cities (city id, city name, longitude,
latitude)

VALUES(1, ’Springfield’, −110.5, 41.1);

UPDATE public.cities
SET geom = ST SetSRID(ST Point(longitude,latitude),4269);

Naming the Geometry Column

Like any other column, you can name the geometry column
whatever you want. Some suggestions:

geom : concise and unambiguous

geometry : ok and often used, but violates conventions as
it’s a reserved keyword

geom (srid) : like geom nad83 to indicate the srs of the
geometry

geo : don’t do this; it can be confused with the
geography type



Today’s Topics

Spatial Databases & Geometry

PostGIS & Desktop GIS

Next Class

PostGIS & Desktop Support

Open Source:

� QGIS

� OpenJUMP

� uDig

� gvSIG

Proprietary:

� ArcGIS

� MapINFO

� Manifold

Connect & Display in QGIS

Connect to the database through the Browser panel. Drag and
drop spatial features from the layers panel into the map view.

QGIS Database Manager

View tabular and spatial data in the DB Manager plugin.
Write SQL and spatial SQL queries and visualize the results.



Today’s Topics

Spatial Databases & Geometry

PostGIS & Desktop GIS

Next Class

Due Next Class

The following are due at the beginning of our next class:

Assignment #6

Posted on the course website

Readings for Class #7

Listed in the syllabus, in the PostGIS In Action book

PostGIS in Action Readings

READ Chapters 3, 4, & 6
But in these chapters you can skim or skip the following:

� 3.2.4: Covering the globe when distance is a concern

� 4.3 Importing and exporting vectors with ogr2ogr

� 4.4 Importing OpenStreetMap data

� 4.5 Importing and exporting raster data

� 6.18 Geohash


