Spatial Database Management GEP 664 / GEP 380

Class #10: Organizing spatial data

Frank Donnelly

Dept of EEGS, Lehman College CUNY

Spring 2019

Today's Topics

Building a Spatial Database

Case Study

Organizing Spatial Data - Modeling a City

Next Class

Studies

Considerations

- Examples of studies that employed spatial databases:
- Baloye2016 Nigerian Disaster Management
- Damito2018 US Archaeological Museum Collection
- Favretto2018 Cataloging Ancient Roman Coins
- Furnass2013 Water Quality in UK Pipe Networks
- Oussalah2013 Twitter and Geolocation
- Rosser2017 New Zealand Landslides
- Silavi2016 Modeling Responsive Urban Environments
- Tissot2012 French Oyster Farms
- Vias2018 Hiking Routes in Spain

- What are the goals for my database? What topic do I want to investigate? What problem do I want to solve?
- What data do I need to model my topic? What data do I need to answer my questions?
- What kinds of analysis would I do?
- What data is available? How do I obtain or collect it? How do I process it?
- How do I construct my database to model my topic? What are the entities, attributes, and relationships? How does the data fit into the database model?
- ▶ How do I insure the integrity and efficiency of my data?
- How can I summarize and visualize my data?

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Scale and Generalization - Global **Spatial Considerations**

Do boundaries need to be precise, or should they be generalized? Does the precision impact your analysis? What would be most appropriate for your maps?

1:10,000,000 1" = 158 miles 1 cm = 100 km 1:50,000,000 1" = 790 miles

1 cm = 500 km

Image source: http://www.naturalearthdata.com/downloads/

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

1" = 1,736 miles 1 cm = 1,100 km

Detailed

Spatial Considerations

Scale and Generalization - Local

5 DQC

Definitions

Spatial Considerations

What is a country? Just independent states, or dependent states and territories? Legal or land boundaries? Polygons or lines?

Scale

- Generalization
- Time
- Locational definitions
- Spatial Reference System

Summary of Spatial Considerations

Identifiers between layers and attributes

Image source: http://www.naturalearthdata.com/downloads/

Question

Building a Spatial Database

Case Study

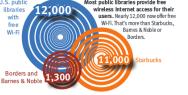
Organizing Spatial Data - Modeling a City

Next Class

What is the geographic distribution of public libraries in the United States? Are some areas better served than others?

Why is this important? Public libraries play an important role in civic life. They provide a range of informational resources and services and a public space that benefits communities. Communities that have no public library or are distant from one will not realize these benefits.

▲□▶▲□▶▲目▶▲目▶ 目 めんの


・ロト・4回ト・モン・モン・ロークへの

Research Inspiration

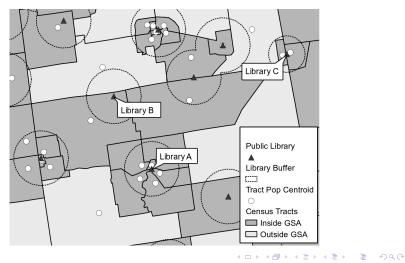
How libraries stack up: 2010

In America, we go to libraries to find jobs, create new careers and help grow our small businesses. We borrow books, journals, music and movies. We learn to use the latest technology. We get the tools and information needed to reenter the workforce. We get our questions answered, engage in civic activities, meet with friends and co-workers and improve our skills at one of the 16,600 U.S. public libraries. Every day, our public libraries deliver millions of dollars in resources and support

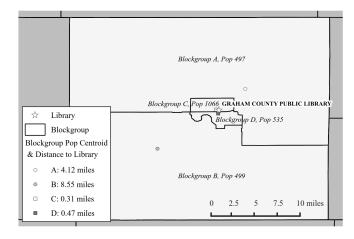
Та	Taking care of business					
	2.8	million				
	times every month					
	COMENTARY	business owners and employees use resources at public libraries to support their small businesses.				

・ロト・西ト・日本・日本・日本

Possible Methods for Study


Take local data (block groups, tracts, ZIP Codes) and summarize and analyze at a large level (counties, metropolitan areas, states, regions).

- Count the number of libraries in each community
- Create zones of impact (buffers) and count areas and people inside and outside the zones
 - Zones could be fixed-width or variable
 - Selected areas could be any that intersect, or that have their centroid in, or can be apportioned based on percentage of overlap
- Measure distance from community to nearest library and study variations in distance
 - Distance could be straight-line or network-based
 - Distance to nearest, n nearest, or avg to all
 - When summarized distance could be weighted by population


Method 1 - Variable Buffers

Method 2 - Population-Weighted Distance

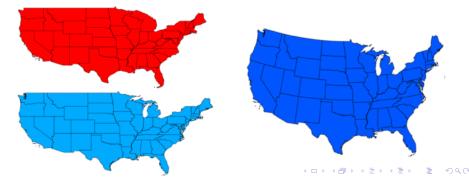
Census tract counted as in library zone if: it has a library, or population centroid falls within buffer. Make comparisons between areas that are in versus out.

Distance calculated from census block group population centroids to nearest library. Average population-weighted distance calculated for all areas.

・ロト・日本・モン・モン・ロークへの

Chosen Method

What data do I need?


- "Regional variations in average distance to public libraries in the United States" Donnelly LISR 37 (2015): 280-289.
 - Population-weighted straight-line distance
 - Population centroids of census blockgroups with 2010 pop to closest library
 - Summarized by US Regions for metro and non-metro
 - Summarized and mapped by state
 - LISA for states to identify clusters
 - Spearman correlations between state and library summaries:
 - Population density and concentration (Hoover Index)
 - ▶ % of population that is urban and metropolitan

- Locations of all public libraries (IMLS)
 - Drop bookmobiles and US territories
 - Geocode missing coordinates
 - Build geometry from coordinates
- Census block group centroids (includes 2010 pop)
 - Build geometry from coordinates
- Boundaries and attributes for context and creating summaries
 - States for summaries by state and division, attributes for density and urbanity
 - Counties for summaries by metro areas, needed for calculating state metro population

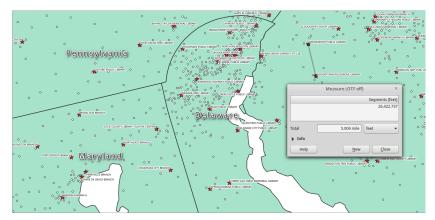
Projection, Generalization, and Scale

All layers and coordinates are in NAD 83. Libraries and centroids span the continent, but measured distances will all be short. Add the SRS for North America Lambert Conformal Conic to the PostGIS spatial ref system table and transform.

Distances will be between points which are relatively precise. Boundaries are just for visual depiction. Use Census Generalized Cartographic Boundary Files instead of TIGER.

Expanding the SRS Table

The spatial_ref_sys table omits several continental and global map projections that are not defined by EPSG. Definitions and PostGIS Insert Statements for many SRS are available at Spatial Reference: http://spatialreference.org/


^{▲□▶▲}舂▶▲≧▶▲≧▶ ≧ めへぐ

Loading

Ready to Go

- Load and plot coordinates of libraries and bg pop centroids, build with ST_Point and transform to NA LCC
- Load county attribute table that indicates metro status
- Load state and block groups shapefiles with PostGIS, create new tables and transform to NA LCC
- Gather and load attributes for the states (density, urbanity, etc)
- The GEOID of the bg pop centroids contains: state, county, tract, and bg codes. Split into separate columns.
- ADD COLUMN then UPDATE SET FROM to add attributes to the bg pop centroids:
 - Insert the division code from the state file
 - Insert metro status from the county file

Libraries (red stars), BG Population Centroids (white dots)

 Use ST_Distance and DISTINCT ON to calculate the distance from every bg centroid to the closest library, save this data in a new table.

TABLE	dist_blkgrps	Searc <u>h</u> Show	
rowid	InputID	TargetID	Distance
1	010010201001	AL0192-002	1782.52524632
2	010010201002	AL0192-002	3128.08402211
3	010010202001	AL0192-002	2284.43882012
4	010010202002	AL0192-002	1013.49701842
5	010010203001	AL0192-002	2229.24571565
6	010010203002	AL0192-002	1342.15900589
7	010010204001	AL0192-002	2932.38932161
8	010010204002	AL0192-002	2900.73693274
9	010010204003	AL0192-002	2310.24541416
10	010010204004	AL0192-002	2318.02883892

Create another table where the distance column is associated with the block groups and all geographic identifiers. Convert distance to miles.

geoid2	dist	pop2010	statefp	countyfp	tractce	blkgrpce	usps	region	metro
010010201001	1.107609494	698	01	001	020100	1	AL	3	M
010010201002	1.943700696	1214	01	001	020100	2	AL	3	М
010010202001	1.419484034	1003	01	001	020200	1	AL	3	М
010010202002	0.629757655	1167	01	001	020200	2	AL	3	М
010010203001	1.385188639	2549	01	001	020300	1	AL	3	M
010010203002	0.833978683	824	01	001	020300	2	AL	3	М
010010204001	1.822101685	944	01	001	020400	1	AL	3	M
010010204002	1.802433808	1937	01	001	020400	2	AL	3	М
010010204003	1.435519503	935	01	001	020400	3	AL	3	М
010010204004	1.440355897	570	01	001	020400	4	AL	3	М

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - 釣��

Calculate Weighted Distances for Larger Areas

Create various Views with GROUP BY statement. Calculate the average population-weighted distance (US regions by metro area below)

SELECT region, metro, ROUND((SUM(dist*pop2010))/SUM(pop2010),1) AS wgt_dist FROM c_blkgrp_dist GROUP BY region, metro ORDER BY metro, region;

region	metro	wgt_dist		
1	M	1.2		
2	M	1.7		
3	M	2.3 1.6		
4	M			
1	R	2.5		
2	R	3		
3	R	3.9		
4	R	4.2		

Sum Population in Distance Bands

Count population within bands of distances; 0 to 1 mile, 1 to 2 miles, etc up to 6 miles and greater (shown below)

SELECT region, metro, SUM(pop2010) AS pop_6miles FROM c_blkgrp_dist WHERE dist > 6 GROUP BY region, metro ORDER BY metro, region

region	metro	pop_gt6miles
1	м	389134
2	M	1298647
3	M	5131130
4	M	1529540
1	R	460374
2	R	2338454
3	R	5173601
4	R	1321819

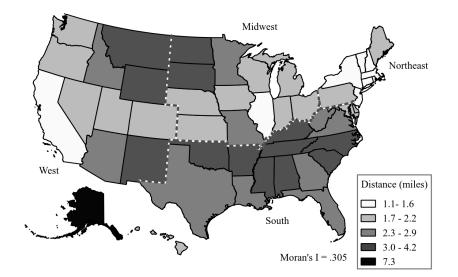
Percent Totals

Findings

Analyzing

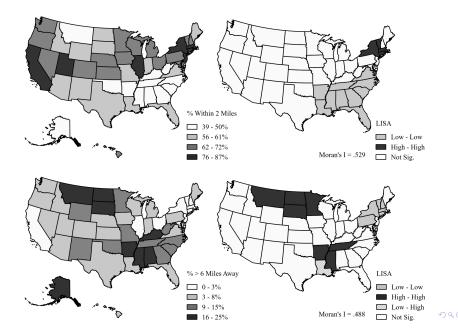
Calculating % totals across rows is a pain. Export out of the database and calculate elsewhere.

```
SELECT t1.region, t1.metro, SUM(t1.pop2010) AS pop_6mile,
((SUM(cast(t1.pop2010 as real))) / t2.total) * 100 AS pct_6mile
FROM c_blkgrp_dist AS t1
JOIN (SELECT region, SUM(pop2010) AS total
FROM c_blkgrp_dist
WHERE metro='M'
GROUP BY region) AS t2
ON t1.region=t2.region
WHERE t1.dist > 6 AND t1.metro='M'
GROUP BY t1.region, t1.metro
```


region	metro	pop_6mile	pct_6mile
1	М	389134	0.7792371528317198
2	м	1298647	2.5175307704947234
3	м	5131130	5.575822412153981
4	M	1529540	2.361452153660606

- Export summaries out of the database, create percent totals in spreadsheet or use a scripting language
- Export the state attributes and distance measurements out to Excel to calculate correlations
- Export the state distance measurements out to a shapefile to run LISA calculations in OpenGEODA
- Use spatial views to create maps in QGIS

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへの


Avg Distance to Nearest Library

- The average American lives 2.1 miles from the nearest public library
- ▶ Approx 65% of Americans live within 2 miles of a library
- There is significant variation in library distance across states and regions
 - 68% of Metro pop vs 47% of non-metro pop lives within 2 miles of library
 - Pop in regions within 2 miles of library: NE 80%, MW 67%, S 52%, W 72%
- States that are more urban and densely populated tend to have shorter distances, but there are regional patterns that can't be explained by this alone

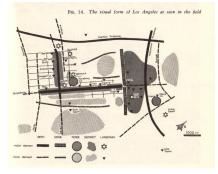
Population Within 2 Miles and More than 6 Miles

Today's Topics

Geometry and Storing Urban Features

Building a Spatial Database

Case Study


Organizing Spatial Data - Modeling a City

Next Class

・ ロ ト ・ 日 ト ・ モ ト ・ 日 ・ つ へ ()・

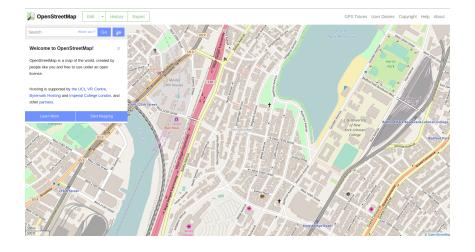
Kevin Lynch *Image of the City* 1960. Physical elements of the city (it's form) and what it means to residents.

City Elements

Lynch's elements:

- Paths Routes along which a person travels and observes the city, and from which the rest of the elements are arranged
- Edges Linear elements not considered as paths by the observer, they are boundaries or breaks in the landscape
- Districts Medium to large sections of the city that share some identifiable characteristics, and in which an observer moves into or out of
- Nodes Strategic points in a city that an observer can enter, they can be junctions, crossings, or simply concentrations
- Landmarks Points that serve as an identifiable physical object, but one that an observer typically does not enter into

City as Signs and Symbols


Open StreetMap

OSM as a collection of elements represented as geometries

Venturi, Scott Brown & Izenour *Learning From Las Vegas* 1972 / 77. Styles and signs make connections between city elements.

▲日▼▲□▼▲田▼▲田▼ ●のへの

・ロト・西ト・ヨト・ヨー うへの

Spatial storage

Inheritance

Different approaches for storing geometry:

Heterogeneous: keep a mix of different geometries in one geometry column

- Declare column with generic type "Geometry": geometry(Geometry,SRID)
- Homogeneous: only one type of geometry per geometry column
 - Declare column as specific type (point, linestring, etc)
 - Different tables for different geometries, or same table with separate geometry columns for each type

Inheritance: non-constrained parent table inherits fixed geometry of child tables

Example in PostGIS in Action: a parent table with all roads, and child tables with rows for specific parts of the country. Inheritance gives you flexibility; query the parent to see everything or query one of the child tables for specifics.

- 1. Create empty parent table with necessary columns and data types
- 2. Create child tables with just a primary key and INHERITS the structure of the parent table
- 3. Alter the child tables to add check constraints to limit data based on attributes
- 4. Populate just the child tables with data

- PostGIS in Action used some sleight of hand to import Open Street Map data into the sample database
- Used separate command-line tool osm2pgsql to map XML-based OSM data into a relational database structure
- http://wiki.openstreetmap.org/wiki/Osm2pgsql
- Used the special PostgreSQL hstore data type to store key-value pairs in a column called tags
- Mapped attributes from this column when needed
- ► tags ->'name' AS place_name

```
<node id="370353699" lat="48.8708079" lon="2.3033889"
user="Charlie Echo" uid="41390" visible="true" version="5"
changeset="4071729" timestamp="2010-03-08T13:19:26Z">
 <tag k="amenity" v="bicycle_rental"/>
 <tag k="capacity" v="38"/>
 <tag k="name" v="Champs-lyses Lincoln"/>
 <tag k="network" v="Vlib'"/>
 <tag k="ref" v="8041"/>
</node>
<node id="370560274" lat="48.8715167" lon="2.3000286"
user="jihaire" uid="154300" visible="true" version="3"
changeset="2529758" timestamp="2009-09-19T02:31:44Z">
 <tag k="amenity" v="bicycle_rental"/>
 <tag k="capacity" v="17"/>
 <tag k="FIXME" v="Station prsente mais non numerote"/>
 <tag k="name" v="39 rue de Bassano - 75016 Paris"/>
 <tag k="network" v="Vlib'"/>
</node>
```

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めぬぐ

・ ロ ト ・ 日 ト ・ 田 ト ・ 日 ・ うへの

Rules and Triggers

Is Your Geometry in Good Shape?

Refer to PostGIS in Action for details. Rules and triggers are objects that exist in the database, and have similar functionality.

Rules

An instruction on how to rewrite a SQL statement. CREATE RULE somerule ON INSERT TO table DO INSTEAD something else. Rules are called once for each statement.

Triggers

Prevents something from happening if certain conditions aren't met, does something instead of a requested INSERT, UPDATE, DELETE command, or does something else in addition to one of those commands. Triggers are called for each row.

Use ST_Equals(a.geometry, b.geometry) to test whether two geometries are equivalent, and ST_IsValid(geometry) to verify whether geometry (polygons) is properly formed (no overlapping boundaries, rings closed, etc).

SELECT zcta, ST_IsValid(geom), ST_IsValidReason(geom) FROM nyc.zctas WHERE NOT ST_IsValid(geom);

Use ST_MakeValid(geometry) to try to repair geometries, but be careful - making a backup is a good idea.

Next Class

Building a Spatial Database

Case Study

Organizing Spatial Data - Modeling a City

Next Class

The following are due at the beginning of our next class:

Assignment #10

Posted on the course website Will be returned to you via email by Tue Apr 23rd at the latest

Readings for Class #11 Listed in the syllabus, in the *Practical SQL* book

< ロ > < 団 > < 臣 > < 臣 > 臣 の < で</p>

・・<