
Spatial Database Management
GEP 664 / GEP 380

Class #11: Database Management

Frank Donnelly

Dept of EEGS, Lehman College CUNY

Spring 2019

Today’s Topics

Transactions

Efficiencies

SQL DCL - Users and Roles

Next Class

Transactions

� Represents one logical unit of work

� Allows you to collect a series of SQL statements into one
single unit

� Allows you to “preview” changes and undo them

� Prevents database corruption when being updated by
multiple users

� While running, write access to the database or to specific
db elements in the transaction is locked for other users,
until the transactions is complete

� Database uses internal transaction log files to track
changes and to reset if needed

ACID Model

Four properties a transaction must have:

Atomicity : must happen exactly once, as a single unit

Consistency : must keep the database in a clean state

Isolation : must be independent of all other transactions

Durability : once completed, it must stay completed



Transaction Components

BEGIN : starts a transaction

SAVEPOINT : asks the server to remember the current state
of the transaction

COMMIT : completes the transaction, updates and unlocks
the database

ROLLBACK : abandons the transaction and restores the
database to it’s previous state. Or use
ROLLBACK TO SAVEPOINT to roll back to that
specific point

If the statement contains or causes an error, the transaction
enters an ABORT phase. No other commands are accepted
except an explicit COMMIT or ROLLBACK.

Transaction Example

BEGIN;

CREATE TABLE airport geog (
iata varchar(3) PRIMARY KEY,
state varchar(2),
lon numeric(9,6),
lat numeric(9,6),
geog geography(point,4326));

INSERT INTO airport geog
VALUES (’JFK’,’NY’,−73.7789,40.6397),
(’IAD’,’VA’,−77.4558, 38.9444),
(’LAX’,’CA’,−118.4081,33.9425),
(’ANC’,’AK’,−149.9983,61.1742),
(’HNL’,’HI’,−157.9225,21.3186);

UPDATE airport geog
SET geog=ST SetSRID(ST Point(lon,lat),4326);
COMMIT;

Today’s Topics

Transactions

Efficiencies

SQL DCL - Users and Roles

Next Class

Vacuum and Analyze

These commands can be run against individual tables or an
entire database

VACUUM : use to reclaim storage space (removes defunct
rows from the database) and update database
statistics

VACUUM ANALYZE : run this first to determine whether
vacuuming is necessary (as it can take a while to
perform)



Indexes

Image source:
https://en.wikipedia.org/wiki/Database_index

� Speeds up access based on
a specific column

� Keys are indexed by
default

� Values can be unique or
not (unique is best)

� Bad for small tables or
small set of values

CREATE INDEX indexname
ON tablename (column);

Spatial Index

A spatial index on a geometry or geography column speeds up
spatial operations and is almost always a net gain. Automatic
when loading shapefiles, but must be done manually after
building geometry from coordinates or when inserting existing
geometry into a new table.

CREATE INDEX indexname
ON tablename
USING gist (column with geometry or geography);

Clustering

CLUSTER is used on an index or a spatial index to reorganize
records on the physical disk space so that they are stored
adjacently. Speeds up processing time. Example below is for a
regular (non-spatial) index.

CREATE INDEX nyc.wstation idx
ON nyc.weather daily (station id);

CLUSTER nyc.wstation idx ON nyc.weather daily;

How is Data Stored on the Physical Disk?

Default data directory: PostgreSQL - (version #) - data - base

Each database is assigned a unique OID number which
represents a folder. Every database object also has a unique
OID number and is stored in a file with this number.

Don’t EVER mess with these files. You can specify the default
data directory during installation.



EXPLAIN

Use EXPLAIN prior to executing a statement to display the
database’s plan for executing the statement, including an
estimate of how long it will take. EXPLAIN ANALYZE will
show you the plan and will actually execute the statement,
while EXPLAIN VERBOSE will provide you with additional
output.

Explain Example

EXPLAIN SELECT DISTINCT t.geoid, t.tract, t.pop2010
FROM nyc.tract popctr t, nyc.subway stations s
WHERE ST DWithin(t.geom, s.geometry, 2640);

EXPLAIN SELECT DISTINCT t.geoid, t.tract, t.pop2010
FROM nyc.tract popctr t, nyc.subway stations s
WHERE ST Distance(t.geom, s.geometry) <= 2640;

Triggers

� Triggers define an action the database should take when a
specific event occurs

� Another method for helping to insure entity and
referential integrity

� Typically performed BEFORE or AFTER an INSERT,
UPDATE, or DELETE

� Provides a level of automation

� Triggers are often tied to user-created functions

� See the textbook for examples

CASE

For conditional expressions. Avoid division by zero:

SELECT val1, val2,
CASE WHEN val2=0 THEN NULL
ELSE val1/val2
END

FROM test;

Assign additional description:

SELECT val1, val2,
CASE WHEN val2=1 THEN ’one’
WHEN val2=2 THEN ’two’
ELSE ’other’
END

FROM test;



Today’s Topics

Transactions

Efficiencies

SQL DCL - Users and Roles

Next Class

Subsets of the SQL Language

� Data Manipulation Language
� SELECT... FROM... WHERE
� INSERT... INTO... VALUES
� DELETE FROM... WHERE
� UPDATE... SET... WHERE

� Data Definition Language
� CREATE...
� DROP...
� ALTER...
� RENAME...

� Data Control Language
� GRANT...
� REVOKE...

Multiple Users

Many databases are multi-user environments where many
people can access, read, and write to the database at once.

� The superuser account postgres is fine for single-user
databases

� In a multi-user environment you would rarely if ever use
this account, and would NOT share it with others. You
would also choose a real password for it

� Each user should be assigned an individual account with
different privileges

Authorization and Privileges

Individual users can be assigned their own credentials and
given certain rights. These can exist on a column, table,
schema, or database level. Common privileges include:

� SELECT

� INSERT

� UPDATE

� DELETE

� CREATE

� USAGE

By default, all users have CREATE and USAGE privileges in
the public schema



Privileges and New Tables

When a user creates a table, they become the owner and have
full privileges for the table. Others won’t have rights unless
they are granted. The same doesn’t apply to views - the
creator is the owner but doesn’t necessarily have full privileges.

Users

Create new users with CREATE ROLE. You can also ALTER
and DROP roles.

Create a user with a password.

CREATE ROLE user1
WITH LOGIN PASSWORD ’12345’;

Create a user with a password that expires.

CREATE ROLE user2
WITH LOGIN PASSWORD ’abcde’ VALID UNTIL ’

2017−12−31’;

PostgreSQL also allows you to use the term USER instead of
ROLE.

GRANT

Give user1 and user2 certain privileges on certain tables.

GRANT SELECT, UPDATE
ON nyc.weather daily, nyc.weather station
TO user1, user2;

Give user admin1 access to all privileges on all tables in nyc
schema, with the authority to grant others privileges.

GRANT ALL
ON ALL TABLES IN SCHEMA nyc
TO admin1 WITH GRANT OPTION;

Give all users the ability to SELECT a certain table.

GRANT SELECT
ON nyc.weather daily
TO PUBLIC;

REVOKE

Remove all privileges for user1 and user2 on certain tables.

REVOKE ALL
ON nyc.weather daily, nyc.weather station
FROM user1, user2;

Remove user admin1’s ability to grant privileges to others on
the tables in the nyc schema.

REVOKE GRANT OPTION
ON ALL TABLES IN SCHEMA nyc
FROM admin1;

Remove all users’ ability to SELECT a certain table.

REVOKE SELECT
ON nyc.weather daily,
FROM PUBLIC;



Group Roles

It’s often better to create group roles that have specific
privileges, and then assign users to that group. For example,
you can have different groups for viewers, workers, and admins.

Create a group role.

CREATE ROLE viewer;

Assign privileges the group role.

GRANT SELECT ON ALL TABLES IN SCHEMA nyc
TO viewer;
GRANT USAGE ON SCHEMA nyc TO viewer;

Assign a user to this group

GRANT user2 TO viewer;

Privilege Hierarchy

A user granted top-level privileges will inherit lower-level
privileges by default

� A user granted full rights on a schema will have rights to
the schema and everything under it (tables, views, etc)

� A user granted full rights on all tables in a schema will
have all rights to those tables, but will not have the right
to modify or alter the schema itself (unless granted
separately)

User and Roles Views

List all users in the database and see basic privileges at the
database level in the pg user view:

SELECT ∗
FROM pg user;

More detailed information is available in pg roles:

SELECT ∗
FROM pg roles;

Viewing Privileges

Users and privileges can be managed at an object-level using
pgAdmin (under properties menu for an object) or via slash
commands in psql.



For Reference

Roles:
https:

//www.postgresql.org/docs/10/sql-createrole.html

Grant:
https://www.postgresql.org/docs/10/sql-grant.html

Revoke:
https:

//www.postgresql.org/docs/10/sql-revoke.html

Today’s Topics

Transactions

Efficiencies

SQL DCL - Users and Roles

Next Class

Due Next Class

SPRING BREAK
There is no class on Apr 23rd. Our next class is on Apr 30th.

The following are due at the beginning of our next class:

Extra Credit
Optional, posted on the course website

Readings for Class #12

Listed in the syllabus, in the PostGIS In Action book

PostGIS in Action Readings

Review Section 2.4 in Chapter 2
Review Section 4.5 in Chapter 4

READ Chapter 7


