Spatial Database Management GEP 664 / GEP 380 Class #12: Rasters, Other Database Formats

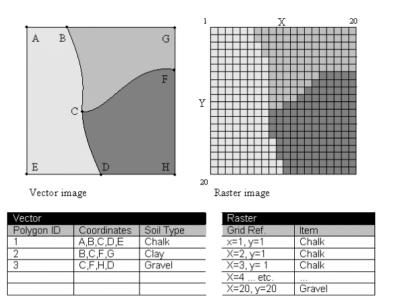
Frank Donnelly

Dept of EEGS, Lehman College CUNY

Spring 2019

Rasters

Today's Topics


SQLite / Spatialite

ArcGIS

Next Class

・ロト・日本・山下・ 山下・ 小田・ トロ・

Rasters

Rasters in PostGIS

Spatial databases are largely a vector-based world. Raster support is recent.

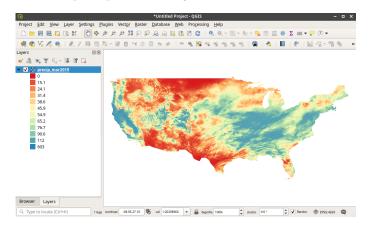

- All imported data is converted and stored in a PostGIS raster format
- Rasters have their own internal tables (raster_columns) and functions
- Tables typically consist of rows where each row is a tile, and the raster column for that row contains all the pixels
- Alternative to storing raster in the database is storing it outside, with a reference table in the db

Image from http://www.arts-humanities.net/wiki/gis_geographic_information_system_archaeology

Example - PRISM Data

Importing Data

We'll use some monthly precipitation data from PRISM as an example - http://prism.oregonstate.edu/

Use the raster2pgsql command line tool, stored in the bin folder in your installation of PostgreSQL.

- Windows users: this would be in: Program Files -PostgreSQL - 10 - bin
- Windows users must navigate to that folder in the command line to run the program
- Mac and Linux users can execute the program from any location in the shell
- Make life simpler: move import files to a temporary folder near the top of your directory tree
- The GDAL command line tool can be used to get info about rasters and do preprocessing before import

raster2pgsql

Raster Column

Use switches to set options. Type raster2pgsql to see them all.

raster2pgsql -s 4269 -C

C:\workspace\prism\PRISM_ppt_provisional_4kmM3_201903_bil.bil precip_mar2019 | psql -h localhost -U postgres -p 5432 -d gep664_2019

- Run the tool, -s specifies the SRID for the layer, -C enforces common db constraints
- (adding -R after srid would keep the file outside the db)
- Provide full path to the import file, followed by name of new table in the db (can also specify schema.table)
- Add a pipe | followed by switches to connect to the database in psql: -h host, -U username, -p port, -d database

SELECT * **FROM** raster_columns: r_table_catalog r_table_schema r_table_name r_raster_column srid scale_x scale_y blocksize_x blocksize_y ∡ name name name name integer double precision double precision integer integer 1 gep664_2019 public precip_mar2019 rast 4269 0.0416666667 -0.0416666667 1405 62 same alignment regular_blocking num_bands pixel_types nodata_values spatial_index out db extent \bigcirc boolean boolean integer text double precision[] boolean geometry . boolean true false 1 {32BF} {-9999} {f} 0103000020AD false

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

ST_SummaryStats takes the raster band as input

SELECT (stats).* FROM (SELECT ST_SummaryStats(rast,1) AS stats FROM precip_mar2019) AS summary;

	count sum mean bigint double precision double precision		stddev double precision	min double precision	max double precision	
1	481631	28312478.579943	58.7845852529073	41.0327992671263	0	603.6669921875

Pixel Statistics - Histogram

 $\mathsf{ST}_{\operatorname{-}}\mathsf{Histogram}$ takes the raster band and number of summary buckets as input

SELECT (stats).*	
FROM (
SELECT ST_Histogram(rast,1,6) AS stats	
FROM precip_mar2019)	
AS summary;	

	min double precision	max double precision	count bigint	percent double precision	
1	0	100.611165364583	418250	0.868403404265921	
2	100.611165364583	201.222330729167	58361	0.121173678604575	
3	201.222330729167	301.83349609375	4401	0.00913770085397327	
4	301.83349609375	402.444661458333	578	0.00120008886471178	
5	402.444661458333	503.055826822917	38	7.88985758807053e-05	
6	503.055826822917	603.6669921875	3	6.22883493795042e-06	
				· · ㅁ > · 《큔 > · 《코 > · 《코 > · · 코	গৎ

▲□▶▲□▶▲目▶▲目▶ 目 のへぐ

Creating and Clipping

Adding Constraints

Clip the raster using geometry of state boundaries (from the Census TIGER files) and store in a new table. Spatial index must be created on convex hull of the raster.

```
CREATE TABLE ny_precip_mar2019 (
rid serial PRIMARY KEY,
rast raster);
```

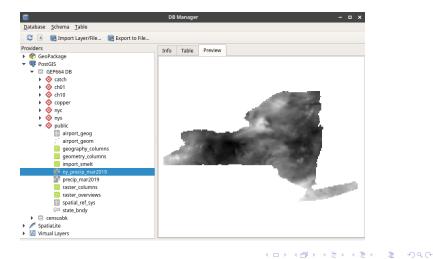
```
INSERT INTO ny_precip_mar2019(rid, rast)
SELECT p.rid, ST_CLIP(p.rast, s.geom)
FROM precip_mar2019 p, state_bndy s
WHERE s.stusps='NY';
```

CREATE INDEX ny_precip_mar2019_idx ON ny_precip_mar2019 USING gist(ST_ConvexHull(rast)); Check the raster catalog after loading and no constraints exist. Add constraints to update the catalog, and check again.

SELECT * FROM raster_columns;

	r_table_catalog name	r_table_schema name	r_table_name name	r_raster_column name	srid integer	scale_x double precision	scale_y double precision	blocksize_x integer	blocksize_y integer
1	gep664_2019	public	precip_mar2019	rast	4269	0.0416666667	-0.0416666667	1405	621
2	gep664_2019	public	ny_precip_mar2	rast	0	[null]	[null]	(null)	(null)

SELECT AddRasterConstraints('ny_precip_mar2019'::name, 'rast'::name); SELECT * FROM raster_columns;


Γ.	r_table_catalog name	r_table_schema name	r_table_name name	r_raster_column name	srid Integer	scale_x double precision	scale_y double precision	blocksize_x integer	blocksize_y integer
1	gep664_2019	public	precip_mar2019	rast	4269	0.0416666667	-0.0416666667	1405	621
2	gep664_2019	public	ny_precip_mar2	rast	4269	0.0416666667	-0.0416666667	193	110

Constraints are applied to the entire table; if you are loading multiple rasters (tiles) into one table, don't apply constraints until everything is loaded.

QGIS Support

Raster Processing

Rasters cannot be added to projects from the Browser or through the Add PostGIS layers interface. Use the Database Manager to preview and add raster layers.

These functions modify the underlying pixels of the raster.

- ST_Transform : convert from one SRS for another
- ST_Rescale : changes pixel size by specifying specific pixel size
- ST_Resize : similar to rescale, except you specify percentage of the original
- ST_Resample : changes pixel size by specifying width and height for entire raster
- ST_Reclass : change the actual value of the pixels

For expanded details on raster analysis and processing, see *PostGIS in Action* Chapter 12 (Chapter 7 just covers the basics)

▲□▶▲舂▶▲≧▶▲≧▶ ≧ りへぐ

Conversion and Exporting

Today's Topics

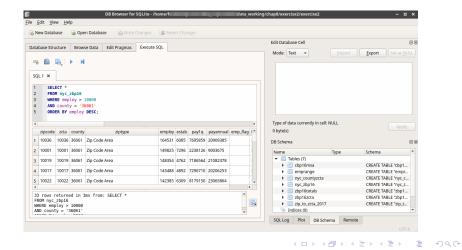
- ST_AsRaster converts vectors to rasters
- There are several functions for converting rasters to vectors. Create convex hulls, envelopes, or actual polygons.
- There are several functions for exporting rasters. There are specific functions for common image formats (like ST_AsTiff) or the ST_AsGDALRaster for 20 other formats.

Rasters

SQLite / Spatialite

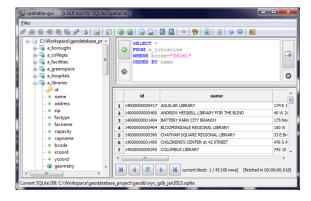
ArcGIS

Next Class


▲□▶▲@▶▲≧▶▲≧▶ 差 のへで

SQLite is a public-domain, file-based database that was specifically created for easily deploying and embedding databases in software applications.

- Originally released in 2000, widely used
- Implements most of the SQL-92 standard
- Uses PostgreSQL as a reference platform
- Does not use a client-server database engine; it is embedded into end programs or used as a stand-alone database
- ▶ Uses data type affinities for columns, rather than strict types


SQLite : Command-line program from the project developers

DB Browser for SQLite : Free desktop program

Spatialite Tools

- Spatialite CLI : Command-line program from the project developers
 - Spatialite GUI : Graphic interface from the project developers
 - QGIS : Through the Database Manager

Spatialite

Spatialite is the open source spatial extension to SQLite. similar to how PostGIS is the spatial extension to PostgreSQL.

- Originally released in 2008
- Uses the same OGC standards for spatial SQL as PostGIS
- Roughly equivalent to PostGIS in supporting vector geometry
- ▶ No equivalent geography type, but there are functions for calculating geodetic distance
- Limited (but growing) support for rasters and topology

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

- Very easy to create and deploy
- File-based, so easy to copy and move around
- Provides many of the relational database benefits that shapefiles lack
- Provides the ability to do SQL and spatial SQL
- Can easily be tapped into with scripting and programming languages

- Not intended for direct multi-user access over a network
- Size limitations on files and tables
- Implements just a subset of SQL language
- Spatial support is largely limited to geometry type
- Spatial indexes must be called explicitly
- Limited documentation / tutorials for Spatialite

SQLite Features Not Supported Today's Topics Nothing beyond the SQL-92 standard, and: Rasters No schemas No right or full outer joins Limited support for ALTER TABLE (you can only rename and add columns) SQLite / Spatialite No GRANT and REVOKE as permissions can only be set at the file level, not for users or objects ArcGIS No strict data types Next Class

▲□▶▲圖▶▲臣▶▲臣▶ 臣 の�?

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

ArcGIS Formats

ArcGIS Interface

The ArcGIS formats are proprietary

- Personal Geodatabase is built on MS Access, and is no longer supported
- File Geodatabase is the default, entirely self-contained
- ArcSDE links ArcGIS to a number of large, proprietary databases (SQL Server, Oracle) as well as PostgreSQL

lmage source: http://www.esriuk.com/software/arcgis/geodatabase

Interface for working with File and Personal Geodatabases is the ArcCatalog

				mize Wi					
C:_Worksp						🔍 १९ 🥝 🔶	🁳 😗 I	56° 🛒	
	ace\ongoing_proje	cts/geo	database_pro	ject\geodb	working_	db\nyc 👻 👳			
🗟 🔊 🖌									
atalog Tre	e		4 ×	Contents	Preview	Description			
80	 nyc_gdb_jan201 a_boroughs a_colleges a_facilities a_greenspac a_hospitals 		*						
	a libraries								
	🖾 a_metro_c 👔	Cop	y	C	trl+C				
	🖸 a_path_sta	< Del	ete					· · · · · · · · · · · · · · · · · · ·	*
	a_pumas2	Ren	ame		F2				
	a_roads								.*
	a schools	Crea	ate Layer						•
	a_subway	Mar	nage		•				•
	a_subway	Exp	ort					• • • • • •	•
	😳 a_subway	Loa				•	•		
	🖸 a_tract_po				· ·	•			•
			iew/Rematc	h Addresse	25		· • •		
😳 a_train_sta 🔗 Properties					•	••			
	a_water_coa		_			•			
	a_water_lake	s	Properties			÷			
	a_zctas b_2010censu III	s_footn	Displays t the select	he propert ed item.		graphy	•		
ersonal Ge	odatabase Featur	e Class	selected					880955.333 205866.6105 Fee	et .

Geodatabase Pluses

Geodatabase Minuses

The file geodatabase offers many advantages over shapefiles:

- Gather features and attributes in one container
- Can handle vectors, rasters, and topology
- Easier to enforce integrity and entity constraints
- Create domains, subtypes, and indexes
- Explicitly link features together in relationship classes
- Easy to use GUI interface in ArcCatalog
- Supports access for multiple readers (but not writers)

The file geodatabase has drawbacks relative to PostGIS

- Cannot do any SQL or spatial SQL; must use internal Arc tools or an enterprise-level db via ArcSDE
- Issues with backwards incompatibility and forced obsolescence
- As a proprietary format, it does not work well with other open source GIS software

[・]ロト・日本・ キャー キー うくぐ

You can connect to PostGIS and Spatialite databases via the ArcCatalog (from 10.2 forward), view data, overlay data with other file types, and perform analysis. Creating objects or db administration is problematic or not possible.

PostgreSQL is supported via enterprise-level ArcSDE (the only FOSS option; other options are proprietary).

Remember: PostgreSQL / Postgis is independent from a specific interface. Use what works best. External PostGIS tools (like the shapefile loader) can always be used outside.

- psql : tried and true command-line, takes practice
- pgAdmin 3 : previous GUI for many years, no-longer supported after PostgreSQL 9.6 (but still alive)
- pgAdmin 4 : new version released with PostgreSQL 9.6
- phpPgAdmin : common web-based client
 - DBeaver : one of many independent GUI tools
 - QGIS : with the database manager
- OpenJUMP : Favorite GIS package of the *PostGIS in Action* authors for PostGIS

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

▲□▶▲舂▶▲≧▶▲≧▶ ≧ めぬぐ

Today's Topics	Due Next Class
Rasters	
SOLite / Specialite	The following are due at the beginning of our next class:
SQLite / Spatialite	Nothing! There are no readings or assignments.
ArcGIS	We'll work with Python in our next class.
Next Class	